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Aquaporins of the plasma membrane
intrinsic protein (PIP) subfamily

are channels which facilitate the diffusion
of water across the plant plasma mem-
brane (PM). Although PIPs have been
considered as canonical protein markers
of this compartment, their endomem-
brane trafficking is still not well docu-
mented. We recently obtained insights
into the constitutive cycling of PIPs
in Arabidopsis root cells by means of
fluorescence recovery after photobleach-
ing (FRAP). This work also uncovered
the behavior of the model isoform
AtPIP2;1 in response to NaCl. The
present addendum connects these find-
ings to another recent work which
describes the dynamic properties of
AtPIP2;1 in the PM in normal and salt
stress conditions by means of single
particle tracking (SPT) and fluorescence
correlation spectroscopy (FCS). The
results suggest that membrane rafts play
an important role in the partitioning of
AtPIP2;1 in normal conditions and that
clathrin-mediated endocytosis is pre-
dominant. In salt stress conditions, the
rate of AtPIP2;1 cycling was enhanced and
endocytosis was cooperated by a mem-
brane raft-associated salt-induced pathway
and a clathrin-dependent pathway.

Plant plasma membrane (PM) proteins are
synthesized in the endoplasmic reticulum
(ER) and are targeted to the surface of
the cell via the secretory pathway. Once
in the PM, they undergo constitutive
cycling, i.e., repeated cycles of endocytosis
and exocytosis, before being eventually

directed to the vacuole for degradation.1

In plant cells, aquaporins of the Plasma
membrane Intrinsic Protein (PIP) sub-
group, channels which facilitate the diffu-
sion of water across the PM, have emerged
as molecular models for studying mem-
brane protein trafficking. Maize ZmPIP2;4
and ZmPIP2;5 and AtPIP2;1 of Arabidopsis
thaliana have, for example, been found to
carry a functional diacidic motif in their
N-terminal tail, to facilitate their export out
of the ER.2,3 Similar export signal motifs
also exist in other membrane proteins.4-6

AtPIP2;1 has been used by many labora-
tories as a marker of the PM,7-12 and indirect
evidence for its clathrin-dependent endo-
cytosis and constitutive cycling between
the PM and endosomal compartments
have been obtained. Yet, knowledge of
AtPIP2;1 endomembrane trafficking is still
fragmentary.

Our two recent studies by Luu et al.13

and Li et al.14 aimed at filling these gaps,
by analyzing in detail the mobility of
PIPs at the PM and key steps controlling
their constitutive cycling. Until now,
this process had been explored using
a combination of pharmacologies to
inhibit endo-, and exocytosis and classical
confocal laser scanning microscopy.
Treatment of Arabidopsis root cells by
the fungal toxin brefeldin A (BFA), which
inhibits the function of adenosine ribosy-
lation factor GTPases by interacting
with their associated guanine nucleotide
exchange factors (see refs. 15 and 16),
provokes the aggregation of vesicles ori-
ginating from both the secretory and the
endocytic pathways in so-called “BFA
compartments.” Consequently, BFA has
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tentatively been considered as a blocker
of PM protein exocytosis. Although the
molecular targets of tyrphostin A23 (A23),
a tyrosine analog, have not been unequi-
vocally demonstrated in plant cells, this
compound has been used to tentatively
inhibit clathrin-mediated endocytosis.17-21

Finally, the lipophilic styryl dyes FM1-43
and FM4-64 have also been used as
endocytic tracers22-26 and although they
selectively label the lipid membrane, theses
molecules have been accepted as markers of
bulk endocytosis. The drawbacks of these
approaches were, besides the undetermined
specificity of some pharmacological com-
pounds, a relatively low resolution of
standard confocal imaging. In the Luu
et al. paper, we have applied fluorescence
recovery after photobleaching (FRAP)
techniques to root epidermal cells of
Arabidopsis plants ectopically expressing
fusions between AtPIPs and green fluore-
scent protein (GFP), to specifically address
the cycling dynamics of these PM proteins
with no need of drug application. In
agreement with previous observations
on other membrane proteins,27 the lateral
diffusion of the PIP constructs was found to
be extremely low, and therefore did not
contribute significantly to the observed
fluorescence recovery. In that work, we
proposed that the signal monitored after
photobleaching was mainly emitted from
the fusion proteins in the endosomes and
those yet to reach the PM by exocytosis, i.e.,
proteins in cytoplasmic compartments
which were moving relatively quickly
compared with those anchored in the PM.
This finding therefore allowed us to explore
the mode of PIP cycling. We validated our
claim that we were observing differential
compartmentation of AtPIPs using a com-
bination of FRAP with a consistent set of
pharmacological treatments. Drugs used
included BFA, A23 or the synthetic auxin
analog, naphthalene-1-acetic acid, which
all reduced significantly the recovery of
fluorescence after photobleaching, indicat-
ing an impairment in the constitutive
cycling of the constructs.

To gain more insight into the dynamic
properties of AtPIPs in the PM, Li et al.
used single particle tracking (SPT) in
continuous images of a GFP-AtPIP2;1
construct recorded by variable-angle
evanescent wave microscopy, together

with fluorescence correlation spectroscopy
(FCS). In this study, we again observed
that the lateral diffusion of the AtPIP
construct is extremely low compared
with that of GFP-LTi6a, another marker
protein of the PM.28,29 SPT in root
cells treated with methyl-β-cyclodextrin
(MβCD), a sterol disrupting reagent, or
using colocalization with mCherry-Flot1, a
marker protein of membrane rafts, indi-
cated that partitioning of the PIP construct
in the PM depends on PM sterol content
and is related to membrane rafts.
Treatment with A23 provoked a marked
increase in the density of the aquaporin
construct in the PM, as monitored by
FCS, suggesting that more constructs
dwell on the membrane after the inhibi-
tion of clathrin-mediated endocytosis.

In previous studies, we have monitored
the effect of salt (NaCl) stress on the
subcellular localization of Arabidopsis root
aquaporins by expression of fusions of
these aquaporins with GFP.30-32 A treat-
ment with 100 mM NaCl induced, after
2–4 h, an increase in intracellular labeling
by the AtPIP fusions, which was inter-
preted as an intracellular relocalization of
these proteins. However, root hydraulic
conductivity, which has been shown to
be determined in part by PIP activity,33

was inhibited at a much faster rate
(reduced by half after 45min). In addi-
tion, FM1-43 uptake in root cells allowed
us to conclude that salt stress enhances
bulk-flow membrane endocytosis as soon
as 45 min after application.24 The whole
set of data prompted us to explore the
trafficking of AtPIPs in the early phase
(, 30min) of the response of root cells
to salt stress.

Several lines of evidence show that the
cellular dynamics of AtPIP2;1 is indeed
markedly altered during the early phase of
the salt stress response. First, FCS showed
that the density of GFP-AtPIP2;1 at the
PM dropped to 46% of the control value
as soon as 10 min after salt exposure,
thereby confirming that salt promotes PIP
internalization. Second, SPT revealed that
the diffusion coefficient and the restricted
diffusion of GFP-AtPIP2;1 in the PM of
salt-treated root epidermal cells were
increased by 100% and 60%, respectively.
FRAP analysis in the same stress condi-
tions also showed that the amplitude of

long-term recovery of fluorescence was
increased by 2-fold. Here, we showed that
the contribution of lateral diffusion of the
constructs within the PM to this process
was negligible and therefore hypothesized
that the faster kinetics of recovery may
reflect an enhanced cycling of AtPIP-GFP.
Complementary analyses suggested that
overall endosomal labeling was unchanged
while the rates of construct endocytosis
and exocytosis (cycling) were simulta-
neously increased. Together these results
suggested an enhanced cycling of AtPIPs,
with a higher surface exchange and
membrane domain restricted diffusion,
which seem to be two typical markers of
enhanced endocytosis.

A critical issue is now to understand
which pathway(s) is involved in PIP
endocytosis under salt stress conditions.
The importance of clathrin-dependent
endocytosis was addressed by FCS in
A23 treated-cells. In these experiments,
A23 treatment increased the density of
PIPs in the PM by ~50% relative to cells
treated in only 100mM NaCl, suggesting
that A23 was somewhat able to counteract
the effect of salt, and that clathrin-
mediated endocytosis also intervenes
under salt stress conditions. In FRAP
experiments, the amplitude of the short-
term response was slightly reduced by
A23. The long-term response was by
contrast similar between salt-treated roots
with and without A23. This suggests that,
in the latter experiments, an enhanced
clathrin-mediated endocytosis could over-
run the effect of this drug. Higher drug
concentrations might be tested, but would
probably impair the vitality of the cells
(see ref. 15). The involvement of other
endocytosis-mediating components can
also be invoked. Adaptors (AP) are protein
complexes which interact with the cyto-
plasmic tail of the cargoes and allow their
recruitment into budding vesicles in
specific intracellular compartments (see
refs. 34 and 35 for review). Micro-adaptins
form one of the four subunits of the AP
complexes and were identified as interact-
ing with tyrosine motifs in cargo cytoplas-
mic tails. The AP-2 complex is known to
mediate endocytosis from the PM under
standard conditions but the micro-adaptin
involved (5 have been described in
Arabidopsis) is still unknown. Here we
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hypothesize that, under salt stress, AP-2
complexes (which are presumably sensitive
to A23) and also other AP complexes
mediate the endocytosis of AtPIPs.
Alternative hypotheses have been explored
by Li et al. using MβCD to disturb
membrane rafts. Treatment of root epi-
dermal cells under salt stress by MβCD
increased by . 30% the density of
AtPIP2;1-GFP in the PM when compared
with cells exposed to salt alone, whereas
this treatment had no effect on their
density in non-stressed conditions. These
data indicate that a raft-associated

endocytic pathway influences endocytosis,
specifically in salt stress conditions.

In conclusion, our two recent studies
delineate a working model for PIPs,
whereby, in normal conditions, membrane
rafts play an important role in aquaporin
partitioning and diffusion at the cell
surface. Clathrin-mediated endocytosis is
significantly involved in this process.
In salt stress conditions, converging
evidence from the two studies indicate
an enhanced cycling of PIPs between the
PM and endosomes located in the mem-
brane vicinity. Whereas clathrin-mediated

endocytosis is likely to operate in these
conditions, a membrane raft-associated
endocytic pathway seems to be activated,
thereby contributing to enhanced PIP
endocytosis. These findings confirm that
the regulation of endocytosis represents an
early and general response of plant cells to
challenging biotic or abiotic conditions
(see ref. 36). Besides the identification of
the molecular components involved in
salt-induced cycling of AtPIP, one key
question is to understand the rationale for
this enhanced cycling and its relation to
the intrinsic activity of AtPIPs.
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